Indices

a is the nozzle cut;
0 is the stagnation parameter; other letter indices denote characteristic points of the jet.

The linear dimensions are normalized to the nozzle radius at the exit,
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WAVE STRUCTURE OF A SUPERSONIC JET DISCHARGING
INTO AN OPPOSING SUPERSONIC STREAM

E. 1. Sokolov and V. N. Uskov ‘ UDC 532.525.2:533.6.011,72

A similarity parameter is suggested for the longitudinal dimensions of the wave structure of a
supersonic underexpanded jet discharging into an opposing supersonic stream, and empirical
equations are obtained for the calculation of these dimensions,

A number of reports devoted to the experimental investigation of the discharge of a supersonic jet into an
opposing supersonic stream are presently known [1-6]. These investigations made it possible to establish the
existence of two types of axisymmetric interaction of a jet with an opposing stream. If the underexpanded jet
is retarded within the limits of the first barrel then an interface 1 concave to the jet (departing to infinity)
and a disconnected bow shock wave 2 (type I flow) develop in the stream. Ahead of the surface, which is an
impermeable barrier to the jet, a middle compression about 3 forms in the latter (Fig. 1). Near the bow sur-
face of the body a circulation zone, closed or open depending on P = pga/pTe and D = dy,/dg develops with a
pressure p different from p, [2]. In flow of type II (penetration mode), observed with n ~ 1, the retardation
of the jet occurs far ahead of the body, in its main section. The interaction of the jet and the stream has a
nonsteady character. These types of flow are also observed in a rarefied stream [5, 6],

The wave structure formed in type I flow is analyzed below, A universal parameter of geometrical simi-
larity of the longitudinal dimensions of the developing wave structure is suggested on the basis of the results
of [1-4] and the experimental data of the authors. The presence of an infinite concave interface makes type I
flow qualitatively similar to the well-studied flow when an underexpanded jet escaping into a flooded space with
a pressure pg acts on an infinite plane barrier. It is known [7] that in the case of the interaction with a barrier
the introduction of the parameter N = Mg/kn makes it possible, by using the distance h to the barrier as the
characteristic dimension, to obtain an empirical dependence connecting the standoff of the middle shock
formed in the jet ahead of the barrier with its location and with the discharge parameters. On the basis of
the indicated qualitative analogy of the processes, we apply the complex N to the analysis of experimental data
on the location of the shock waves and the interface in the discharge of a jet into an opposing stream. The
range of the parameters under consideration is given in Table 1, The distance xpy, to the middle shock is used
as the characteristic geometrical dimension in the investigated flow. This distance is calculated from the
condition of equality of the stagnation pressures on the sides of the jet and the stream at the common critical
point R (Fig, 1), When the distribution of Mach numbers M along the axis of the free jet is known this condi-
tion leads to the following equations for the determination of xm:
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TABLE 1, Range of Experimental Investigations

No. | Mo | s | & [ b | Mo [Body  |Lit.source
1 5.0 1,2 2,8—6,3
2 4,85 1.6 4.04
3 « 2,0 3,52—6,34
4 4,0 2.4 6,38—6,78 A
5 7.1 3,3 1,4 1,82 3,4—4.27 i
6 « 2,18 4,27 0, = 10°
7 {0 5,0 1090; 1796
8 « 6,0 476—3000
9 I3 10,0 1120—1290
10 « 12,0 1410
11 7,6 2—23,5
12 2,5 1,0 1,4 16,3 3,18—12,4 C {2}
13 33,3 6,3—9,5
14 3,5 1,4 13,33 55; 142
15 « « 8.0 55, 110 } c
16 « « 5,0 137 A
17 « « 13,33 118 [3}
18 4,2 1,0 « « 53; 132 C
19 « « 8,0 40; 132 }
20 « 1,67 13,33 121 B
21 2,5 1.4 « 24; 89,5 }
22 3,5 9 < 22,1—55
23 2,5 1,0 1,096 1,2 260 A 14
f-’g 1,83 ég ? ,ggﬁ‘llg ? A Authors’
2 « , ,36—18,
% « 3,0 1'35—4.8 |@,—5° | CXP&
27 3,0 1,0 1,4 1,428 2490
28 « 2,0 5,55—27
29 « 3,0 2,7-—7.,0
20°

T e

L)

Fig. 1. Qualitative flow pattern
in the interaction of an underex-~
panded jet with an opposing super-
sonic stream.

Here the pressure pge is determined from the Rayleigh equation with known pe, Mw, and ke The de-
pendence M(x) for jets with different parameters is given in [8], for example,

The values of xy,, as well as the quantities x; and xy, measured from photographs, were normalized to
the corresponding values of N calculated both with an expression ratio n. = pa/Pe and at an expansion ratio
nc = pa/Pe- The quantity ne was determined from the measured pressure p, near the exit cross section of the
nozzle under the assumption that the flow in the circulation zone formed ahead of the body is isobarie,
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Fig. 2. Dependence of location of bow shock wave (a) and inter-
face (b) on parameters in the jet and the opposing stream: a) N =
Noo; b) N = Ng; I) from Eq. (2); II) (3); IID (86).

There are such data in [2] in addition to the experiments of the authors of the article.

The experimental results on the position of the bow shock wave in the stream, treated in the form xp/Ne =
f(xy/No), are presented in Fig. 2a. For xm/Newo < 0.3 all the points are grouped near a single dependence,
while for xpy,/N, > 0.3 one observes separation of the experimental results into layers with respect to D. Such
modes correspond to large values of D or, conversely, to small P, The results of [2] show that in this case
the pressure p¢ in the circulation zone differs from pw, and at the same time, the wave structure of the jet is
evidently determined by the pressure ps. Treatment of the experimental data on the location of the interface
in the form x;/N,, = f(xm/No) gives results qualitatively identical to those given in Fig, 2a: At x,,/Ni, > 0.3 the
data of {2] corresponding to large D fall out of the general group.

The introduction of the pressure p, into the complex N allows one to liquidate the separation of the ex-
perimental results into layers with respect to D, This is seen, for example, in Fig. 2b, where test data char-
acterizing the location of the interface between the jet and the stream, treated in the form xj/N, = f(x,/N¢),
N¢ = Mgvkng, are presented.

By analogy with [7], to represent the experimental results in the form of empirical equations we chose
the functional dependence ’

w0745 A exp ( — B
N
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/
/

= [~

1:{"19.

X3

The coefficients of this dependence were calculated from the experimental data (Table 1) by the least-
squares method. In the treatment of the results using the complex N, the experimental data of [2] for D =
16.3 and 33.3 were not taken into the calculation, The empirical equations obtained, solved for xp and x;, have
the following form:

2) Xm/No < 0.3; N = Neo

xp/N = 0,857G—0.197; ¢ = 0,035; (2)
x;/N =0.621G—0.143; ¢ = 0.049; ®)
b) Xpy/Neo > 0.3; N = N
xp/N = 1.03G —0.292; ¢ = 0,025; 4)
xi/N = 0,773G —0.206; ¢ = 0,026, (5)
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where G =—1n (0.745 —~ Xp,/N); the value of xy, is calculated from (1); ¢ is the standard deviation of the points
from the corresponding approximating dependence.

Equations (2)-(5) are valid in the following range of parameters: M= 1.83-7,1; My = 1-5.3; k = 1,097,
1.4, 1,67; D = 1,2-33.3. We note that the parameters of the oncoming stream, which are taken into account
through pge in the calculation of xp,, do not enter explicitly into these equations,

As shown in [2], the pressure in the circulation zone depends on the form of the front surface of the body
from which the jet discharges, the parameters at the nozzle cut and in the oncoming stream, and the value of
D, The analysis made of the experimental results indicates that with an increase in P or a decrease in D the
characteristic dimensions of the wave structure cease to depend on the concrete dimensions and shape of the
body. This evidently indicates that pe approaches p, with an increase in P (a decrease in D),

In Fig. 2b curve Il characterizes the dependence of the location of the middle shock in a jet discharging
onto an infinite plane barrier on the parameters of the interaction [7]:

xm/N = 0.745 — 0,832 exp (— L.73A/N); n = p,/po (6)

A comparison of Egs. (3), (5), and (6) shows that at small values of the argument the calculations by them lead
to very close results; with an increase in xy,,/N a calculation by Eq. (5) gives results higher than those from (3)
and (6), although the latter remain close to each other. This indicates the influence of the curvature of the
barrier on the location of the middle shock: In the case of strongly concave barriers the central shock is located
closertothe nozzle than that ahead of barriers approaching flat ones.

Thus, the choice of the distance to the middle shock as the characteristic dimension and of the pressure
pc in the circulation zone as the characteristic pressure allows one to use the complex N as the self-similarity
parameter for the longitudinal dimensions of the wave structure of a jet discharging into an opposing stream.
Ag is known, this complex is the self-similarity parameter for free supersonic jets in the gasdynamic [8, 9],
transitional, and main sections [10], as well as for jets interacting with infinite plane barriers [7] and for
opposing coaxial underexpanded jets [11]. Al this, in conjunction with the results presented above, allows
one to consider the complex N as the universal parameter of self-similarity for the longitudinal dimensions
of a supersonic underexpanded jet.

In conclusion, the authors express their appreciation to M. I, Vozlinskii for making possible a detailed
acquaintance with the experimental results which he obtained,

NOTATION

is the Mach number;

is the pressure;

is the adiabatic index of gas jet;

is the expansion ratio of discharge of jet;

is the diameter;

is the distance from nozzle fo an infinite plane barrier perpendicular to the jet axis;

Xm» Xi» Xp are the distances from nozzle to middle shock of jet, interface, and bow shock wave, respec-
tively.

Fan w2

Indices

a is the parameters of nozzle cut;

m is the middle of body;

o0 is the oncoming stream;

o is the isentropically stagnated stream;

8 is the stagnation behind the direct shock;
c is the circulation zone,

The linear dimensions are normalized to the nozzle diameter.
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GENERALIZATION OF THE CLASSICAL RAYLEIGH
EQUATION TO SEVERAL NON-NEWTONIAN LIQUIDS

V. S. Novikov ) UDC 532,528:532.529.6

Equations are derived that describe the change in the radius of a spherical gas inclusion in the
Bingham, Ellis, Reiner—Rivlin, Shul'man, Kapur—Gupta,and Oswald de Vielle non-Newtonian
liquids, as well as in a power-law liquid.

The Rayleigh equation for highly viscous liquids with a finite relaxation time of elastic strains was ob-
tained in [1]. In the present paper this equation is extended to non-Newtonian liquids, for which the rheologi-
cal equations of state known to the present author are being extended.

In a spherical coordinate system the equation of motion, including strain and the continuity equation, are

dv, du doP or, 2
T v, —T_ ) — 0 o T 1
p(6t+r6r) 6r+6r_rr w @
1 d
—— () =0, @)
rz dr )

if the bubble center is considered to be testing in the liquid. Integrating (2) with respect to r from the bubble
radius R to infinity, we obtain the radial velocity of motion of the liquid v, = R(R/r)2, expressed in terms of
the drift velocity of the surface R. Here and elsewhere, the dot over R denotes differentiation with respect
to time. Substituting vy into Eq. (1) and integrating it with respect to r in the limits R — «, we obtain

=3

b 3 ' TI’T
o(RR + - R)=Pr —Pu+t 7l — %l g+ 2 [——r— dr, @)
R
where PR and P, are the pressures in the liquid an the bubble surface and at infinity, and p is the liquid den-
sity. As P, one can take the external static pressure in the liquid. The relation between PR and the static
pressure in the bubble P, is established by the Thomson relation
20 4 0y o, \|
Pp=Pj—— — — L. —-r ,
R R 3 o ( or r ) |r=R
where o is the surface tension of the liquid. As p, for non-Newtonian liquids, one can take the slope of the
stream curve for small shear stresses (see [2]). The relation between the components of the strain tensor
Tij and the components of the velocity deformation tensor éi]’ i.e., the rheological equation of state, depends
on the type of specific non-Newtonian liquid.
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